Differential Diagnosing of Papillary Thyroid Carcinomas in Cytological Images with A VGG-16 Deep Convolutional Neural Network Model: A Pilot Study
Thyroid World Congress ePoster Library. Xiang J. 06/20/19; 272100; 65
Jun Xiang
Jun Xiang
Login now to access Regular content available to all registered users.

You may also access this content "anytime, anywhere" with the Free MULTILEARNING App for iOS and Android
Abstract
Rate & Comment (0)

OBJECTIVEIn this study, we exploited a VGG-16 deep convolutional neural network (DCNN) model to differentiate papillary thyroid carcinoma (PTC) from benign thyroid nodules using cytological images.

METHODS: A pathology-proven dataset was composed of 279 cytological images of thyroid nodules. The images were cropped into fragmented images and divided into a training dataset and a test dataset. VGG-16 and Inception-v3 DCNNs were trained and tested to make differential diagnoses. The characteristics of tumor cell nucleus were quantified as contours, perimeter, area and mean of pixel intensity and compared using independent Student’s t-tests.

RESULTS:
In the test group, the accuracy rates of the VGG-16 model and Inception-v3 on fragmented images were 97.66% and 92.75%, respectively, and the accuracy rates of VGG-16 and Inception-v3 in patients were 95% and 87.5% patient wisely. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules, which were 61.01±17.10 vs 47.00±24.08, p=0.000, 134.99±21.42 vs 62.40±29.15, p=0.000, 1770.89±627.22 vs 1157.27±722.23, p=0.013, 165.84±26.33 vs 132.94±28.73, p=0.000), respectively.

CONCLUSION: With training of a large dataset, the DCNN VGG-16 model showed great potential in facilitating PTC diagnosis from cytological images. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules.

 


OBJECTIVEIn this study, we exploited a VGG-16 deep convolutional neural network (DCNN) model to differentiate papillary thyroid carcinoma (PTC) from benign thyroid nodules using cytological images.

METHODS: A pathology-proven dataset was composed of 279 cytological images of thyroid nodules. The images were cropped into fragmented images and divided into a training dataset and a test dataset. VGG-16 and Inception-v3 DCNNs were trained and tested to make differential diagnoses. The characteristics of tumor cell nucleus were quantified as contours, perimeter, area and mean of pixel intensity and compared using independent Student’s t-tests.

RESULTS:
In the test group, the accuracy rates of the VGG-16 model and Inception-v3 on fragmented images were 97.66% and 92.75%, respectively, and the accuracy rates of VGG-16 and Inception-v3 in patients were 95% and 87.5% patient wisely. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules, which were 61.01±17.10 vs 47.00±24.08, p=0.000, 134.99±21.42 vs 62.40±29.15, p=0.000, 1770.89±627.22 vs 1157.27±722.23, p=0.013, 165.84±26.33 vs 132.94±28.73, p=0.000), respectively.

CONCLUSION: With training of a large dataset, the DCNN VGG-16 model showed great potential in facilitating PTC diagnosis from cytological images. The contours, perimeter, area and mean of pixel intensity of PTC in fragmented images were more than the benign nodules.

 


    This eLearning portal is powered by:
    This eLearning portal is powered by MULTIEPORTAL
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.


Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.


Save Settings